PROCESSING & PLOTTING gHMBC

There are so many issues that are involved in processing, displaying, and plotting data from these experiments, that a separate manual was warranted. Even this “bare bones” guide to processing & plotting can’t cover everything that you might need to know and do. Please ask for help the first time you perform this, to minimize your frustration (if for no other reason).

Conventions in this manual:

Boldface text indicates commands to be typed at the computer

<angle brackets> are used to designate a key to be pressed (i.e. `<Ret>` for Return/Enter)

[square brackets] designate an icon/button in the VNMR menu to be clicked

Mouse Conventions: click, by default, refers to the Left Mouse Button.

- **LMB** will be used to designate the Left Mouse Button
- **MMB** will be used to designate the Middle Mouse Button
- **RMB** will be used to designate the Right Mouse Button

Sometimes you will need to hold, rather than click the mouse button. This means that you should press and hold the button down throughout the operation.

Note: All commands in boldface assume that you press `<Return>` afterwards.

1). Select your printer/plotter and paper size first.
2). Type `jexp1` to join Exp:1, and load the 1D-^1^H spectrum from step 6 on the previous page.
3). If you have a 1D-^1^3^C spectrum acquired on the same instrument as the gHSQC/HMQC spectrum, type `jexp2` (or any other valid Exp: #), and load the 2D-HSQC spectrum inot EXP2.
4). Type `jexp3` (or any other valid experiment number) to join EXP3, and load the 2D-gHSQC or gHMQC spectrum.
5). Type `setLP1` to activate forward linear prediction (improves resolution and quality).
6). type `sinebell` or `sinesq` to set the window-function parameters.
 a) The two most common *window functions* used for this experiments is sinebell; however, sinc^2^ (sinesq) will sometimes improve the Signal:Noise ratio for gHMBC.

7). type `wft2d` to process the data.
8). If the contour plot is not centered, type `fullt` followed by `dconi`.

9). **NOTE**: the command `dconi` is analogous to “ds” for 1D spectra. If you lose your 2D image, and you want to view it, type `dconi` to re-display the 2D spectrum. You don’t need to re-type wft2d unless you want to try different processing parameters. In fact, re-processing every time will waste a lot of your time!

10). Adjusting the contour plot:
 a). *click* the **MMB** on any spot in the 2d-display, to scale the spectrum so that spot just touches the floor of the contour plot. Clicking **MMB** on a taller peak will reduce the vs to make smaller peaks disappear.

 b). Alternatively, you can *click** MMB** on the colored scale (on the right) to reduce the minimum level displayed. I recommend using (a), rather than (b).

 c). You can fine-tune the peaks displayed peaks by clicking on `[vs+20%]` or `[vs-20%]`. Be careful NOT to click on [Autoplot] by accident. This is an easy mistake, and if you have lots of noise on your display it can shutdown the computer you are using for a long time.
11). Setting the Chemical Shift Reference:
 a). Expand your plot on a peak of known chemical shift (in either the 1H or 13C dimension)
 b). Set the cursor (cross-hairs) on the peak.
 1). To set the shift in f1(13C), type: \texttt{rl1(#.##d)}. The “d” is important because the 13C dimension is the “decoupler” dimension.
 2). To set the shift in f2(1H), type: \texttt{rl(#.##p)}.

12). Changing the orientation of the 2D plot (i.e. F1 mode vs. F2 mode):
 a). The X-axis defines the working “mode”, so if the 13C axis is on the bottom, you are working in F1-mode, if the 1H axis is on the bottom you are working in F2-mode. To change modes, do the following:
 1). Click on [Return], click on [More], then click on [F1mode] or [F2mode] to switch modes.

13). Plotting: there are three options...select your plotter before proceeding. Note: if you are using large (11x17) paper, you need to substitute “plhxcorbig” for “plhxcor”. Otherwise, a small plot will be printed on big paper.
 a). If you have a high-resolution 13C spectrum of your sample loaded in EXP2, you can plot with your high-resolution 1D spectra along the sides.
 1). Type: \texttt{plhxcor(15,1.4,1,2)}….where “15” is the number of contours, “1.4” is the spacing between the contours (should be between 1.1 and 2.0), “1” is the EXP# containing the high-resolution proton spectrum, and “2” is the EXP# containing the carbon spectrum. Note: if you use a 1D 13C spectrum acquired at a different frequency, your 13C spectrum will not line-up with your 2D peaks.

 b). If you want to plot your high-resolution, 1D proton spectrum along the 1H axis, but you don’t have a high-resolution 13C spectrum acquired on the same instrument, you can do the following:
 1). You need to perform a “dummy plot” to resize the window on the screen. To do this type the following: \texttt{plhxcor_nopg(10,2,1,-1)} …wait a few seconds until activity stops…type \texttt{pgcl} (this dumps the plot into nowhere).
 2). What you do next depends upon whether your x-axis is 13C or 1H. We will assume that the X-axis is the 13C axis for these instructions. See step 11 above to switch the X-axis display mode.
 3). Zoom-in on the region you wish to plot.
 a) click [Proj], then click [Hproj(max)], then set the vertical scale for the 1D projection with MMB (caution: don't click in the 2D window, or you will mess-up the scaling of the 2D window).
 b) Click [Plot], to add the projection trace to the plot.
 c) Type \texttt{plhxcor(15,1.4,1,-1)} to complete the plot. {The numbers mean: 15 contours, separated by 1.4 intensity units, the 1D-1H spectrum is in EXP1, and the “-1” means to suppress the plotting of the 13C axis (however, we plotted the 13C trace in the previous step}).
 d) Type \texttt{dconi} to re-display the plot, click [Full], and repeat the process to plot expansions of all of the regions that you wish to plot.

 c). Plotting with projections (low-resolution) on both sides.
 1). from \texttt{dconi} , click [Proj], then click [Hproj(max)], then set the vertical scale for the 1D projection with MMB (caution: don't click in the 2D window, or you will mess-up the scaling of the 2D window).
 2). Click [Plot],
 3). Click [Vproj(max)] then [Plot].
 4). Click [Cancel], [Return], [Plot], [All Contours], [All Parameters], & [Page].
14). Generating 1D-projections from 2D gHMBC spectra for plotting as 1D 13C spectra:
 a). You will need an unused experiment, in which to place the 1D-projection. For example, if you are using EXP1 for your 1D-1H spectrum and EXP2 for your 2D spectrum, you could use EXP3 for your 1D-projection. So, in the following example, we will use (3) as the experiment number for your projections.
 b). You must have the 13C axis on the bottom. As described earlier, you can click [Return], [More], then [F1 mode] to change the orientation.
 c). With the 2D plot on the screen (dconi), type proj(3) then jexp3 to join EXP3.
 d). Type f <space> full <space> ds to be sure you are seeing the full 13C spectral window. You can use the MMB as usual to adjust the vertical scale of the plot. You will notice that the carbon peaks are broader than a normal 13C spectrum. This is normal, and characteristic of the lower resolution in the 2D experiment.
 e). Use the threshold ([th]) and dpf command to display the frequencies of all 13C signals.
 f). You can use the normal plotting commands to create 1D plots of the 13C projections.

15). Plotting to a PostScript file, instead of printing on paper:
 a). Make sure you select the 8x11 LaserJet 4MV as your plotter before proceeding.
 b). Follow the plotting instructions above; however, substitute “plhxcor_nopg” for “plhxcor”. For example, if you follow step 14(b) above, you would do the following:
 1). Perform a “dummy plot” to resize the window on the screen. To do this type the following:
 plhxcor_nopg(10,2,1,-1) …wait a few seconds until activity stops…type pgcl (this dumps the plot into nowhere).
 2). What you do next depends upon whether your x-axis is 13C or 1H. We will assume that the X-axis is the 13C axis for these instructions. See step 11 above to switch the X-axis display mode.
 3). Zoom-in on the region you wish to plot.
 a) click [Proj], then click [Hproj(max)], then set the vertical scale for the 1D projection with MMB (caution: don't click in the 2D window, or you will mess-up the scaling of the 2D window).
 b) Click [Plot], to add the projection trace to the plot.
 c) Type plhxcor_nopg(15,1.4,1,-1) to complete the plot. {The numbers mean: 15 contours, separated by 1.4 intensity units, the 1D-1H spectrum is in EXP1, and the “-1” means to suppress the plotting of the 13C axis (however, we plotted the 13C trace in the previous step)}.
 4). Notice the “PS” in the upper-left corner of the screen. This means that all of the plot elements have been created, and the program is awaiting the “page” command to send to the printer. If you are observant, you should have noticed this before.
 5). Type page(“filename.ps”), substituting your own filename for filename. This will write the plot to the file “filename.ps” instead of to the printer. If you wanted to, you could type page, and the plot would be sent to the printer.
 c). You can transfer this file to one of the PCs in the lab (using secure-shell sftp), and save it for editing in a program like Adobe Illustrator. This is a great way to make figures of your 2D NMR spectra.